АСПЕКТЫ РАЗВИТИЯ РЫБОЛОВСТВА

УДК 639.2.05

МОДЕЛИРОВАНИЕ ДОЛГОСРОЧНЫХ ОПТИМАЛЬНЫХ РЕШЕНИЙ ПО ВЫБОРУ ПАРАМЕТРОВ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ ПРЕДПРИЯТИЙ ДАЛЬНЕВОСТОЧНОГО РЫБОХОЗЯЙСТВЕННОГО КЛАСТЕРА НА ПРИМЕРЕ ПРОМЫСЛА И ПЕРЕРАБОТКИ САРДИНЫ-ИВАСИ И СКУМБРИИ

© 2017 г. Б.И. Покровский, А.И. Соломин, И.В. Малахов, К.А. Кайзер

Тихоокеанский научно-исследовательский рыбохозяйственный центр, Владивосток, 690091 E-mail: pokrovsky@tinro.ru

Поступила в редакцию 21.12.2016 г.

В работе представлены результаты исследования перспектив применения моделей линейного программирования и системной динамики в целях совершенствования методики анализа инвестиционных проектов. В качестве основы апробации методики выбраны различные сценарии промысла и переработки сардины-иваси и скумбрии.

Ключевые слова: сардина-иваси, скумбрия, инвестиционный проект, модель линейного программирования, оптимизация, модель системной динамики.

ВВЕДЕНИЕ

Основным инструментом определения эффективности рассматриваемого инвестором проекта является бизнес-планирование. В ходе разработки бизнес-плана выполняются, как правило, детальные экономические расчеты всех затрат по созданию будущего производства, оценивается потенциальный рынок сбыта продукции, намечаемой к выпуску, определяется прибыльность проекта и сроки его окупаемости (Гармаш и новных фондов. др., 2012).

Необходимость анализа эффективности предполагаемых инвестиций в промышленные предприятия обусловлена долгосрочным характером использования капиталов. При этом специфика предприятий рыбной промышленности, как добывающих, так и перерабатывающих, состоит в том, что решение об инвестировании принимается в условиях действия весьма значимых факторов риска, к которым можно отнести риски промыслорудования и маркетинговой стратегии. Опыт рис. 1.

применения аппарата бизнес-планирования ставит вопрос о развитии и дополнении традиционных процедур инвестиционного анализа и экспертной оценки методами оптимизации и системного моделирования. Совершенствование процедур анализа позволит снизить риски реализации инвестиционных проектов и подтолкнуть предприятия Дальневосточного рыбохозяйственного бассейна к более активному обновлению ос-

МАТЕРИАЛ И МЕТОДИКА

В работе рассматривается применение моделей линейного программирования и системной динамики в составе процедуры принятия решений об инвестировании в проекты рыбного хозяйства. Совмещение обычных процедур разработки инвестиционных проектов и оптимизационных моделей линейного программирования и модевой обстановки, выбора эффективного обо- лей системной динамики представлено на

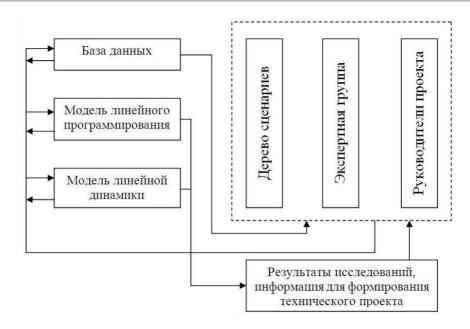


Рис. 1. Блок-схема процедуры принятия решений с совместным использованием моделей линейного программирования и системной динамики при инвестировании в проекты рыбохозяйственной отрасли.

Оптимизация параметров инвестиционного проекта методами линейного программирования состоит в поиске таких значений показателей, при которых выгода от проекта будет максимальной при условии выполнения системных ограничений проекта. Построенная модель линейного программирования позволяет быстро получать оптимальный план выпуска продукции при любом изменении исходных параметров и определять с помощью двойственных оценок наилучшие варианты наращивания мощностей инвестиционного проекта.

Вместе с тем нужно заметить, что оценки оптимальных параметров проекта носят статичный характер и не позволяют рассмотреть особенности динамики проектируемого объекта в условиях «нештатных» ситуаций, например, при значительных колебаниях параметров производственных потоков.

Опыт работы авторов с различными вариантами бизнес-планов показывает непроведения инвестиционных исследований различных вариантов организации промысла и переработки водных предприятие двумя транспортными судами биоресурсов на судах и на береговых предприятиях с помощью методов системной же новой постройки. Режим доставки улодинамики. Построение модели системной вов — челночный: пока одно судно находит-

динамики дает возможность корректировать исходные параметры проекта с учетом рисков операционной деятельности предприятия.

В качестве объекта моделирования в нашем исследовании использован инвестиционный проект промысла и переработки дальневосточной сардины (сардины-иваси) и японской скумбрии. Сардина-иваси и скумбрия являются традиционными объектами промысла в Дальневосточном рыбохозяйственном бассейне, однако с начала 1990-х гг. их запасы находились на очень низком уровне (Барышко, 2009). Сегодня этот промысел восстанавливается, что вызывает необходимость разработки и анализа различных вариантов организации промысла и производства продукции из этих видов.

Для анализа возможностей промысла и переработки сардины-иваси и скумбрии был разработан инвестиционный проект. Согласно проекту, промысел предполагается вести двумя среднетоннажными судами новой постройки (малый траулер-процессор), осуществлять доставку на береговое (переоборудованный наливной сейнер) так-

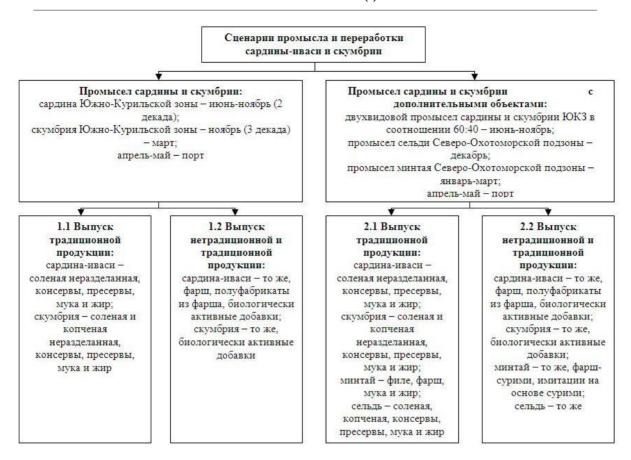


Рис. 2. Сценарии промысла и переработки сардины-иваси и скумбрии.

ся на приеме сырца от добывающих судов, базового сценария с менее рискованным вадругое сгружает сырец в порту, что позволяет наладить регулярные поставки свежего сырья на береговое предприятие. Из зоны ны-иваси принимался на уровне 15-40 т, в Южных Курил срок доставки (в оба направления) составляет 3,5 сут., из Охотского моря -5 сут.

Большое разнообразие продукции из сардины-иваси и скумбрии делает необходимым создание определенной группировки по ассортименту для разработки вариантов переработки сырья. Такие варианты переработки приведены на схеме (рис. 2), включающей в себя сценарии промысла и подсценарии переработки уловов.

Предполагаются два сценария — базовый и резервный. При базовом ведется промысел сардины-иваси и скумбрии круглый год, при резервном — с июня по ноябрь. В остальное время при резервном сценарии ведется промысел минтая и сельди. Резервный сценарий необходим для сопоставления параметров инвестиционных проектов для

риантом организации промысла.

Вылов на судо-сутки лова сардисреднем — 27,5 т. С учетом потерь времени на промысле вылов может составить 22 т, на два среднетоннажных судна — 44 т. Аналогичным образом определяли суточные поставки сырья для других видов рыбы. В случае промысла минтая и сельди срабатывают ограничения по объему трюмов транспортных и добывающих судов (принимались равными 280 т в RSW-танках (Refrigerated Seawater)).

На рис. 2 приведен весь возможный ассортимент выпускаемой продукции, за исключением мороженой рыбы низкой степени разделки. Ограниченность сырьевой базы и неравная ценность различных видов продукции делают необходимым построение модели оптимизации ассортимента.

Расчеты по оценке оптимальных

вышеперечисленных сценариев функционирования предприятия могут выполняться в следующих вариантах:

оптимизация по критерию максимума прибыли для заданных объемов вылова и технологических ограничений перерабатывающего комплекса;

максимизация вылова при ограничениях по затратам предприятия и заданных в следующем виде (2-4): объемах вылова;

минимизация затрат при условии выполнения планового задания в стоимостных показателях и технологических ограничениях.

В расчетах использовали критерий максимизации прибыли, поскольку данная целевая функция лучше всего отражает задачи хозяйствующего субъекта в условиях рыночной экономики. Она может быть записана в виде (формула 1):

$$\sum_{j=1}^{n} \sum_{i=1}^{l} \left(V_{j} \times S_{j} \times N_{j} \times P_{j} - E_{j} + \sum_{z=1}^{r} \left(v_{j} \times S_{j} \times N_{j} \times P_{j} - E_{j} \right) + V_{j} \times \left(N_{j} \times P_{j} - E_{j} + V_{j} \times S_{j} \times N_{j} \times P_{j} - E_{j} \right) + V_{j} \times \left(N_{j} \times P_{j} - E_{j} - E_{j} \right) \rightarrow \max,$$

$$(1)$$

где V_i — принятый суточный объем рыбы (морепродукта) ј-того вида, направленный на переработку, т; S_{i_i} — доля суточного объема рыбы (морепродукта) і-того вида, направленная на выработку і-того вида продукции; N_{i_i} , $N_{j_{i_z}}$, $N_{j_{i_w}}$, N_{j_m} и N_{j_o} — нормы выхода і-того вида продукции, z-того вида субпродукта при производстве і-того вида продукции, отходов (w) при производстве і-того вида продукции, нормы выхода рыбной муки (m) и рыбьего жира (o) соответственно при переработке ј-того вида рыбы (морепродукта); P_{j_i} , $P_{j_{iz}}$, $P_{j_{im}}$ и $P_{j_{io}}$ — цена за 1 т i-того вида продукции, z-того вида субпродукта, рыбной муки (m) и рыбьего жира (о) соответственно при переработке ј-того вида рыбы (морепродукта); E_{ij} , E_{jiz} , E_{jim} и E_{i_0} — прямые издержки (включая инвестипродукции, z-того вида субпродукта, рыбной ку объемы производства будут небольшими.

муки (m) и рыбьего жира (o) соответственно при переработке і-того вида рыбы (морепродукта).

Управляемыми переменными в модели являются S_{i} ; все остальные элементы, включая объемы поставок сырья, представляют собой параметры.

Ограничения модели можно записать

$$\sum_{j=1}^{n} V_{j} \times S_{j_{i}} \le C_{i}, \tag{2}$$

$$\sum_{i=1}^{n} \sum_{i=1}^{l} V_{j} \times S_{j_{i}} \times N_{j_{i_{w}}} \leq C_{m}, (3)$$

где C_i и C_m — производительность линии по производству і-того вида продукции и рыбной муки соответственно;

$$Q_{j_{i_1}} \le V_{j} \times S_{j_i} \times N_{j_i} \le Q_{j_{i_1}}, \tag{4}$$

где Q_{ji1} и Q_{ji2} — нижняя и верхняя границы объема производства і-того вида продукции из *і*-того вида рыбы (морепродукта) соответственно, обусловленные рыночными и нормативными факторами.

Получаемые оценки оптимального распределения сырья и соответствующей им инвестиционной отдачи с применением двойственных оценок оптимального плана позволяют выбрать наиболее эффективный из предложенных подсценариев промысла и переработки ресурса.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Применение модели линейного программирования позволило определить перечень продукции в каждом сценарии, при котором выручка оказывается максимальной. Результаты приведены в табл. 1.

Для каждого вида продукции предполагается устанавливать только одну базовую производственную линию, производительность которой является ограничением по загрузке сырьем. Такой подход рассчитан на диверсификацию производства и позволяет не ционные) на производство 1 т і-того вида производить оценку емкости рынка, посколь-

ПОКРОВСКИЙ И ДР.

Таблица 1. Ассортимент вырабатываемой продукции на предприятии береговой переработки сардины-иваси и скумбрии

Сце- нарий	Объект	Объем поступления сырца, т/судо-сут-ки промысла	Вид продукции	Объем сырца, направляемый на производство вида про-	Длитель- ность промысла, судо-сутки	Годовой объем сырца, направляемый на производство вида продукции, т
1.1			Пресервы	24,0		3960
	Сардина	44	Консервы	19,0	165	3135
			Соленая не-	1,0	10)	165
			Копченая не-	1,0		135
	Скумбрия	36	Пресервы	12,0	135	1620
			Консервы	23,0		3105
1.2			Медицинский жир	2,2 (отходы)		363
			Пресервы	12,0		1980
	C	44	Консервы	17,0	165	2805
	Сардина		Фрикадельки из фарша	14,0		2310
			Соленая не-	1,0		165
		24	Копченая не- разделанная	1,0	405	135
	Скумбрия	36	Пресервы	12,0	135	1620
			Консервы	23,0		3105
2.1	Сардина	26,4	Пресервы	12,0		2160
			Консервы	13,4	180	2412
			Соленая не-	1,0	100	180
	Скумбрия	17,6	Копченая не-	1,0		180
			Пресервы	12,0	180	2160
			Консервы	4,6		828
	Сельдь	44	Пресервы	12,0		360
			Консервы	31,0	20	930
			Соленая не-	1,0	30	30
		44	Филе	22,0		1980
	Минтай		Фарш	22,0	90	1980

Таблица 1. Окончание

Сце-	Объект	Объем поступления сырца, т/судо-сут-ки промысла	Вид продукции	Объем сырца, направляемый на производство вида продукции, т	Длитель- ность промысла, судо-сутки	Годовой объем сырца, направляемый на производство вида продукции, т
2.2			Медицинский жир	2,2 (отходы)		396
	Сардина	26,4	Пресервы	12,0	100	2160
			Консервы	13,4	180	2412
			Соленая не-	1,0		180
			Копченая не- разделанная	1,0		180
	Скумбрия	17,6	Пресервы	12,0	180	2160
			Консервы	4,6		828
	Сельдь	44	Пресервы	12,0		360
			Консервы	31,0	30	930
			Соленая не-	1,0	70	30
			разделанная			
			Филе	22,0		1980
	Минтай	44	Фарш- сурими	22,0	90	1980

каждого сценария были выполнены расчеты инвестиционной привлекательности проекта по добыче и береговой переработке сардиныиваси и скумбрии. Общий объем инвестиций составляет от 2,0 до 2,3 млрд руб. в зависимости от сценария.

Ниже в табл. 2 представлены результаты расчета экономической и инвестиционной эффективности организации промысла и переработки сардины-иваси и скумбрии по заданным сценариям. Методика анализа описана ранее (Беренс и др., 1995; Брейли и др., 2008; Виленский и др., 2008). Горизонт планирования установлен в 15 лет.

объектов минтая и сельди (сценарии 2.1 и 2.2 — промысел этих видов рыбы и дополни-2.2) снижает окупаемость проекта. Этот эф- тельных объектов, а именно минтая и сельди. фект связан с тем, что основные фонды проек- Из этого можно сделать предварительный та ограничивают суточный вылов по минтаю и вывод о том, что в современных условиях

На основании оптимального плана для сельди в 15—30 т на судо-сутки, что приводит к потере основного преимущества промысла этих объектов — больших уловов на усилие.

Другой эффект обнаруживается при расчете показателей сценария 2.2, предполагающего производство нетрадиционных видов продукции. Выпуск такой продукции значительно более выгоден предприятию, чем производство рыбных полуфабрикатов низкой степени разделки. Также, если сравнить сценарии 1.2 и 2.2, можно увидеть, что разница между ними по показателям эффективности инвестиций близка к нулю (табл. 2). Напомним, что под сценарием 1.2 подразумевается целевой промысел сар-Добавление в число промысловых дины-иваси и скумбрии, а под сценарием

Таблица 2. Показатели эффективности инвестиций

П	Сценарий*				
I Іоказатель	1.1	1.2	2.1	2.2	
Ставка дисконтирования, %	23,55	23,55	23,55	23,55	
Период окупаемости, мес.	45	28	не окупается	28	
Дисконтированный период окупаемости, мес.	101	44	не окупается	44	
Средняя норма рентабельности, %	35,90	60,33	26,83	59,65	
Чистый приведенный доход, млн руб.	393,394	1 907,579	-165,070	2 056,560	
Среднегодовая чистая прибыль, млн руб.	630,819	1087,215	516,400	1184,570	
Индекс прибыльности, руб.	1,22	2,06	0,91	2,04	
Внутренняя норма рентабельности, %	28,68	46,48	21,50	46,01	
Модифицированная внутренняя норма рентабельности	25,23	29,64	22,81	29,55	

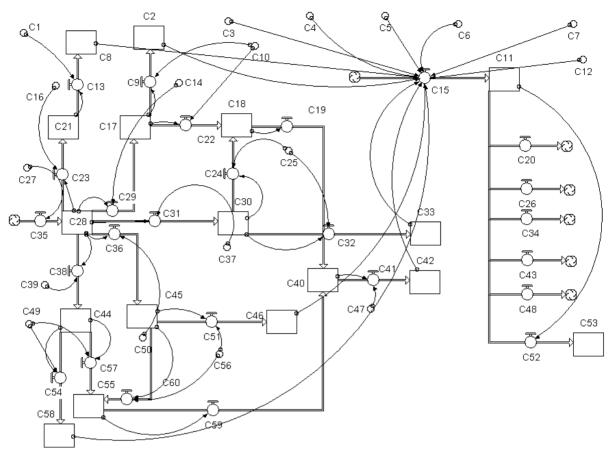
Примечание. *См. в табл. 1.

внедрение производства нетрадиционных типов продукции позволяет диверсифицировать сырьевую базу предприятия без ущерба можно сделать следующие выводы. для нормы прибыли.

Полученные оценки оптимального распределения ресурсов и соответствующей им инвестиционной отдачи позволяют выбрать наиболее выгодный проект из предложенного перечня сценариев. Однако они носят статический характер и дают ограниченное представление о поведении производственной системы при изменениях различных параметров. Модель системной динамики, реализованная в рамках данного исследования, позволяет проанализировать динамику исследуемой производственной системы (рис. 3, табл. 3).

Построение модели системной динамики основывалось на модели линейного программирования, что достигалось посредством отражения правой части уравнений последней модели в накопительных переменных первой (Dingethal, 2016; Martinez et al., 2016).

Модель системной динамики позволяет своевременно выявлять «узкие места» и потенциальные рисковые зоны инвестиционного проекта, связанные с развитием проекта во времени. Она может быть дополнена промысловым и финансовым блоками для более полного отражения всех производственных процессов.


ВЫВОДЫ

По результатам проведенной работы

Использование в инвестиционном анализе моделей линейного программирования и системной динамики позволяет добиться большей эффективности принятия решений об инвестировании в проекты рыбного хозяйства и избежать стратегических ошибок, возникающих в «нештатных» ситуациях. Модель линейного программирования дает возможность выбрать оптимальный план производства при заданных параметрах проекта, а модель системной динамики проанализировать возможные риски проекта при изменении этих параметров.

Проведенное исследование эффективности инвестиций в промысел и переработку сардины-иваси и скумбрии позволяет рекомендовать целевой промысел указанных объектов с выпуском продукции глубокой переработки. Риски инвестирования в проект могут быть снижены за счет совершенствования методики системного моделирования работы производственного цеха, особенно на этапе выхода на полную производственную мощность.

Необходимо заметить, что применение указанных методов в совокупности дает

Рис. 3. Схема функционирования берегового цеха в терминах модели системной динамики, обозначения см. в табл. 3.

Таблица 3. Расшифровка обозначений, представленных на рис. 3

Обозна- чение	Расшифровка обозначения
C1	Норма выхода соленой неразделанной рыбы
C2	Объем производства консервированной рыбы
C3	Цена соленой рыбы
C4	Цена консервированной рыбы
C5	Цена консервированной продукции
C6	Цена рыбной муки
C7	Цена фарша
C8	Объем производства соленой неразделанной рыбы
C9	Объем выхода консервированной рыбы
C10	Норма выхода консервированной рыбы
C11	Объем продаж
C12	Цена на фрикадельки
C13	Объем выхода соленой неразделанной рыбы
C14	Доля сырца, направленная на производство консервированной рыбы
C15	Реализация продукции

ПОКРОВСКИЙ И ДР.

Таблица 3. Продолжение

Обозна- чение	Расшифровка обозначения		
C16	Доля сырца, направленная на производство соленой рыбы		
C17	Объем сырца, направленный на производство консервированной рыбы		
C18	Объем отходов от производства		
C19	Общий объем отходов от производства		
C20	Коммунальные платежи		
C21	Объем сырца, направленный на производство соленой неразделанной рыбы		
C22	Отходы от производства консервированной рыбы		
C23	Поступление сырца для производства соленой неразделанной рыбы		
C24	Отходы от производства пресервов		
C25	Норма выхода пресервов		
C26	Затраты на зарплату		
C27	Объем поставок сырца от промысла		
C28	Объем сырца		
C29	Поступление сырца для производства консервированной рыбы		
C30	Объем пресервов		
C31	Поступление сырца для производства пресервов		
C32	Объем выхода пресервов		
C33	Объем производства пресервов		
C34	Дополнительные затраты		
C35	Поступление сырца		
C36	Поступление сырца для производства фарша		
C37	Доля сырца, направленная на производство пресервов		
C38	Поступление сырца на производство фрикаделек		
C39	Доля сырца, направленная на производство фрикаделек		
C40	Общий объем отходов от производства		
C41	Поступление отходов на производство рыбной муки		
C42	Объем производства рыбной муки		
C43	Амортизация		
C44	Запас сырца для производства фрикаделек		
C45	Запас сырца для производства фарша		
C46	Объем производства фарша		
C47	Норма выхода рыбной муки		
C48	Затраты на упаковку		
C49	Норма выхода фрикаделек		
C50	Доля сырца, направленная на производство фарша		
C51	Выработка фарша		
C52	Налоги		
C53	Налоговые платежи		

Таблица 3. Окончание

Обозна- чение	Расшифровка обозначения
C54	Выработка фрикаделек
C55	Объем отходов при производстве фрикаделек
C56	Норма выхода фарша
C57	Выработка отходов при производстве фрикаделек
C58	Объем производства фрикаделек
C59	Выработка общего объема отходов при производстве фрикаделек и фарша
C60	Выработка отходов при производстве фарша

возможность оперативно анализировать возможные последствия изменений в инвестиционном проекте, что непосредственно отражается на уровне качества принятия управленческих решений.

СПИСОК ЛИТЕРАТУРЫ

Барышко М.Е. Промысел скумбрии и сардины-иваси на Дальнем Востоке. Владивосток: Дальрыбвтуз, 2009. 472 с.

Беренс В., Хавранек П. Руководство по подготовке промышленных технико-экономических исследований. М.: Интерэксперт, 1995. 343 с.

Брейли Р., Майерс С. Принципы корпоративных финансов. М.: Олимп-Бизнес, 2008.1008 с.

Виленский $\Pi \mathcal{A}$., Лившиц В.Н., Смоляк С.А. Оценка эффективности инвестиционных проектов. М.: Дело, 2002. 888 с.

Гармаш Д.Е., Покровский Б.И., Костюкова О.И., Соломин А.И. Инновационный подход к развитию структуры и основных фондов рыбопромышленных предприятий // Нац. интересы: приоритеты и безопасность. 2012. № 38. С. 38—43.

Dingethal C. Incorporating optimisation processes into system dynamics models — an application in the field of logistics. 2016. (www.fucam.ac.be/redirect.php3?id=46692)

Martinez S., Cordillo F., Lopez E., Alcala I. A case of interaction between systems dynamics and linear programming: the rapim-pirenaica model. 2016. (http://www.systemdynamics.org/conferences/1999/PAPERS/PARA115.PDF)

LONG-TERM OPTIMIZATION SOLUTIONS MODELLING FOR THE RUSSIAN FAR EAST FISHERY PROCESSING ENTERPRICES CLUSTER (EXAMPLE OF CATCHING AND PROCESSING FOR MACKEREL AND IWASHI-SARDINE FISHERY)

© 2017 v. B.I. Pokrovskii, A.I. Solomin, I.V. Malakhov, K.A. Kaizer

Pacific Ocean Scientific Research Fishery Center, Vladivostok, 690091

Main results of the common linear programming and system dynamic models in the field of analyzing investment projects methods are proposed in presented paper. Different scenario for types of mackerel and iwashi-sardine catching and processing management are investigated below.

Keywords: sardine-iwashi, mackerel, investment project, linear programming model, system dynamic modeling.